Expand (2x+3)^4

We will you use Pascal's triangle in order to find coefficients:         1        1  1       1 2 1     1 3  3 1    1  4  6  4  1 so, our coefficients will be 1,4,6,4,1 now, let's expand: (2x+3)4=(2x)4+4*(2x)33+6(2x)232+4(2x)*33+34=16x4+96x3+216x2+216x+81 (2x+3)4=116x4+96x3+216x2+216x+81

CP
Answered by Cezar P. Further Mathematics tutor

3498 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Why does tanx = sinx/cosx ?


Rationalise and simplify (root(3) - 7)/(root(3) + 1) . Give your answer in the form a + b*root(3) where a, b are integers.


The coefficient of the x^3 term in the expansion of (3x + a)^4 is 216. Find the value of a.


Prove that sin(x)^2 - 5cos(x)^2 = 6sin(x)^2 - 5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning