Expand (2x+3)^4

We will you use Pascal's triangle in order to find coefficients:         1        1  1       1 2 1     1 3  3 1    1  4  6  4  1 so, our coefficients will be 1,4,6,4,1 now, let's expand: (2x+3)4=(2x)4+4*(2x)33+6(2x)232+4(2x)*33+34=16x4+96x3+216x2+216x+81 (2x+3)4=116x4+96x3+216x2+216x+81

CP
Answered by Cezar P. Further Mathematics tutor

3733 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Given f(x)= 8 − x^2, solve f(3x) = -28


Find the coordinates of the minimum/maximum of the curve: Y = 8X - 2X^2 - 9, and determine whether it is a maximum or a minimum.


If y=x^3+9x, find gradient of the tangent at (2,1).


A curve has equation: y = x^3 - 3x^2 + 5. Show that the curve has a minimum point when x = 2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning