This is a question from a past paper: https://prnt.sc/r6jnxc

The answer is in the same image as the question.

MS
Answered by Marek S. Further Mathematics tutor

1922 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Find the x and y coordinates of the minimum of the following equation: y = x^2 - 14x + 55.


Find the solution of 3^{4x} = 9^{(x-1)/2}.


Show that (n^2) + (n+1)^2 + (n+2)^2 = 3n^2 + 6n + 5, Hence show that the sum of 3 consecutive square numbers is always 2 away from a multiple of 3.


Find the coordinates of the minimum/maximum of the curve: Y = 8X - 2X^2 - 9, and determine whether it is a maximum or a minimum.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning