Explain the geometry and bond angles in a NH3 molecule

So if we think about a molecule of ammonia, NH3, there are 3 hydrogens, each with 1 electron (as its atomic number is 1) covalently bonded to 1 nitrogen atom with 5 outer shell electrons on it due to its atomic number of 7, but having 2 electrons in its innermost shell. As hydrogen can only ever have 1 bond to/from it, we can say that nitrogen is the central atom with hydrogens around it. As covalent bonds involve the sharing of electrons, and there are 3 covalent bonds, nitrogen shares 3 of its 5 outer electrons, 1 each with the 3 hydrogens, and so there are 3 bonding pairs. 5-3=2, so that leaves 1 lone pair of electrons around this centrral nitrogen atom. The valence shell electron pair repulsion (VSEPR) theory states that electron pairs around a central atom will repel so they are as far away as possible. As there are 4 electron pairs around the central nitrogen, you can imagine each spreading out to the 4 corners of a tetrahedron, which would suggest that the bond angle is 109.5 degrees. However, as only 3 of the electron pairs are bonding, there isn't a bond at the 'top' to form a tetrahedron, and the actual shape of NH3 is trigonal pyrimidal. VSEPR theory also states that the lone pair of electrons repels bonding pairs more than bonding-bonding pair repulsion, and so you can imagine the 1 lone pair squeezing the bonding pairs slightly closer together in NH3, which reduces the bond angle by about 2 degrees, making the bond angle 107.5 degrees.

AL
Answered by Anthony L. Chemistry tutor

27462 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Back in 1950s, it was common to have as house cleaning items bleaching solution (containing sodium hypochlorite) and ammonia (used to remove, for example, hair dye stains). However, many people ended up in hospital after using them both, why?


Comparing aluminium and magnesium, which has a lower first ionisation energy? Explain.


State and explain the trend in melting points of diamond, iodine and hydrogen fluoride.


What is the easiest way to calculate E cell values?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning