A block of mass (m) is placed on a rough slope inclined at an angle (a) to the horizontal, find an expression in terms of (a) for the smallest coefficient of friction (x), such that the block does not fall down the slope.

The first thing to do as with any mechanics question is draw a force diagram with the weight (mg), the friction (F) and the normal reaction (R). As we are finding the smallest coefficient of friction possible, the block must be in limiting equilibrium, so the friction (F) = the coefficient of friction (x) multiplied by the normal reaction (R), so F = xR. Now we can resolve forces parallel and perpendicular to the slope to obtain two simultaeneous equations. Resolving perpendicular, we find that R = mgcos(a), and resolving parallel we find that xR = mgsin(a). By substituting the first equation into the second, we get xmgcos(a) = mgsin(a). By cancelling out the "mg" term from both sides, and dividing through by cos(a), we end up with x = sin(a) / cos(a), which of course leads to our final answer that x = tan(a).

OW
Answered by Ollie W. Physics tutor

4157 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A cyclist rides 10km. In the first 5km, they climb a hill, averaging 10km/h. In the second 5km, they descend the hill, averaging 30km/h. What is their average speed over the full 10km?


A 80kg man is hanging from two 1.5m ropes that lie at 60 degrees from the horizontal. What is the tension in each rope required to prevent the man from dropping?


What happens to ice when energy is supplied at a constant rate in terms of the changes in energy of the molecules?


An ultraviolet wave of continuous frequency reflects from a solid surface back in the direction of the transmitter. Assuming no amplitude is lost, describe and explain the behaviour of the particles in the medium between the transmitter and surface.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences