Explain the substitution reaction of a primary halogenoalkane with sodium hydroxide.

First of all, it is important to determine what kind of substitution reaction the halogenoalkane will undergo. We are given the information that it is a primary halogenoalkane, which generally undergo a SN2 reaction. 'S' standing for substituion, 'N' for nucleophilic, and '2' standing for bimolecular. The reaction is SN2 and not SN1 as the carbon centre is not sterically hindered (the nucleophile is able to 'barge' through), so attack by the nucleophile is possible. Furthermore, the transition state is more stable than the carbo-cation that would otherwise be formed.

In this particular case, the hydroxide ion attacks the carbon atom attached to the bromine in the bromoethane, as it has a partial +'ve charge, forming a high-energy transition state. The the carbon centre being bonded both to the hydroxide ion and halide ion for an intensely short period of time (imagine a weightlifter with two extremely heavy dumbells being carried by both arms). The reaction proceeds with the halide ion 'breaking off' heterolytically, the carbon-hydroxide bond being fully made, and the new subsituted product, ethanol, being formed. The second-step is the rate-determing step, thus a second-order reaction. 

RS
Answered by Rutger S. Chemistry tutor

4826 Views

See similar Chemistry IB tutors

Related Chemistry IB answers

All answers ▸

Hydrogen bromide forms a strong acid when dissolved in water whereas hydrogen fluoride forms a weak acid. Distinguish between the terms strong acid and weak acid. State equations to describe the dissociation of each acid in aqueous solution. [3]


Which are four factors affecting the rate of a chemical reaction and how do these affect the rate constant of the reaction?


Why a sodium ion has a smaller radius than a sodium atom?


What is the intermolecular force involved in secondary protein structure?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning