Prove e^(ix) = cos (x) + isin(x)

  • Google+ icon
  • LinkedIn icon
  • 786 views

We first write each side of the equation using the maclaurin series for each function.

eix = 1 + ix + (ix)2/2! + (ix)3/3! + (ix)4/4! + ......

eix = 1 + ix - x2/2! - ix3/3! + x4/4! + .....

cos(x) + isin(x) = (1 - x2/2! + x4/4! - x6/6! +....) + i(x - x3/3! + x5/5! - x7/7! + ......)

writing the above equation in increasing powers of x:

cos(x) + isin(x) = 1 + ix - x2/2! - ix3/3! + x4/4! + ....

As seen the maclaurin series for each side of the equation are the same hence eix = cos(x) + isin(x)

Pavan M. A Level Maths tutor, A Level Further Mathematics  tutor, Uni...

About the author

is an online A Level Further Mathematics tutor who has applied to tutor with MyTutor studying at Cambridge University

Still stuck? Get one-to-one help from a personally interviewed subject specialist.

95% of our customers rate us

Browse tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok