Differences between Sn1 and Sn2 reactions

--> Sn2

It is a one-step mechanism which is considered to be Sn2 where two species are involved in the rate determining step. Both species account for the overall rate of the reaction where the rate equation is: rate = k[R-X][OH-] where X is the halogen. The overall order for this reaction is 2. Sn2 occurs in reactions where primary halogenoalkanes are present, forming alcohols. Even though the reaction occurs in one step only, there is a transition state occuring in between, where there is bond breakage and bond formation, in order to remove the halogen group, and add the hydroxide ion (OH-). 

--> Sn1:

In contrast, the Sn1 reaction occurs in two steps. Only one species is involved in this reaction, and the first step of the reaction is where the bond between the carbon atom and the halogen breaks. This is the rate determining step of the reaction, which is the slowest step in the reaction. Therefore, the rate equation includes only the halogenoalkane: rate = k[R-X] where X is the halogen. The overall rate for this reaction is 1. Sn1 occurs where tertiary halogenoalkanes are involved, to form tertiary alcohols. As said above, it occurs in two steps. the first step is where the C-X bond breaks, and this forms a tertiary carbocation. Moving to the second step, the OH- group attacks the carbocation, forming the alcohol. 

In conclusion, the main differences of these two reactions are the different types of halogenoalkanes present,  the steps in the mechanism, their rate equations and the overall reaction orders.

LS
Answered by Lucy S. Chemistry tutor

4800 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Describe how you would distinguish between separate samples of the two 2 0 4 stereoisomers of CH3CH2CH2CH2CH(OH)CN [2 marks]


Why does nuclear radius decrease and first ionisation energy increase across the period?


Back in 1950s, it was common to have as house cleaning items bleaching solution (containing sodium hypochlorite) and ammonia (used to remove, for example, hair dye stains). However, many people ended up in hospital after using them both, why?


You added 75cm^3 of 0.5moldm^-3 HCl to impure MgCO2, and some was left unreacted. The unreacted HCl reacted completely with 21.6cm^m of 0.5moldm^-3 NaOH. So what is the percentage purity of the MgCO3 sample?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning