Alice drops an apple from a height of 2 m above the ground. Assuming there is no air resistance, what is the speed of the apple when it hits the ground?

Since there is no loss of energy to air resistance and the apple is freely falling under the influence of gravity, this is an example where we can apply the principle of conservation of energy. In the initial state, just before it is released, the apple only has potential energy:  E0 = mgh, where m is the mass of the apple, g is the gravitational acceleration, and h is the height above the ground from which the apple is dropped. When it hits the ground, this energy has converted to kinetic energy: Ef = mv2/2, where v is the velocity we need to find. Equating the two expressions and re-arranging to solve for speed, gives v = (2gh)1/2.  (Answer: v = 6.26 ms-1)

OD
Answered by Oana D. Physics tutor

3207 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

An airplane accelerates steadily from rest to 355 m/s, after travelling a distance of 105,000 m. How long, in minutes, does it take the airplane to reach this speed?


An electric heater has a power of 1000W. It is connected to mains electricity (230V). The heater is equipped with an Earth wire. a) Calculate the current in the heater. b) Explain the role of the earth wire as a safety feature.


What are the changes in energy that an object experiences when it is launched vertically at a given velocity into the air and falls back to the ground? This question ignores air resistance.


What is the reaction force? (eg from the ground or table)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning