Alice drops an apple from a height of 2 m above the ground. Assuming there is no air resistance, what is the speed of the apple when it hits the ground?

Since there is no loss of energy to air resistance and the apple is freely falling under the influence of gravity, this is an example where we can apply the principle of conservation of energy. In the initial state, just before it is released, the apple only has potential energy:  E0 = mgh, where m is the mass of the apple, g is the gravitational acceleration, and h is the height above the ground from which the apple is dropped. When it hits the ground, this energy has converted to kinetic energy: Ef = mv2/2, where v is the velocity we need to find. Equating the two expressions and re-arranging to solve for speed, gives v = (2gh)1/2.  (Answer: v = 6.26 ms-1)

OD
Answered by Oana D. Physics tutor

2721 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

Describe how the control rods in a nuclear reactor are used to regulate nuclear fission in a nuclear reactor.


Jane drops a football from the roof onto the ground below. The ball weighs 0.8kg and the distance the ball falls is 5m. Assuming there are no external forces acting on the ball, what speed will the ball be travelling at just before it hits the ground?


What is the wavelength of a wave?


How do you calculate the specific heat capacity of a substance?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences