Calculate the pH change when water is added to 25.0 ml of 0.250M NaOH to form a 1.00l solution.

The initial [-OH] is 0.250M since NaOH releases 1 mole of -OH per mole of base. Using Kw=[H+][-OH], [H+]=(110-14)/0.250=410-14M (note remember units). Hence the initial pH=-log(410-14)=13.4 (note 3 significant figures since same s.f. as values in question). The diluted [-OH] is 0.250(25/1000)=6.2510-3M (dilution factor, remember units). Using Kw=[H+][-OH], [H+]=(110-14)/(6.2510-3)=1.610-12M. Therefore the new pH=-log(1.6*10-12)=11.80. Hence the pH change is 11.80-13.40=-1.60, so a decrease of 1.60pH units. I would write down the question on the whiteboard, and allow the student to work through it, giving guidance and helpful suggestions when they struggled/became stuck - but not simply telling them the answers because it is most beneficial for the student to think through the question for themselves.

MS
Answered by Milind S. Chemistry tutor

16031 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Which of the following shows the formation of the intermediate in the mechanism for the reaction between ethene and bromine?


Give the IUPAC name of CH3CH2CH2CH2CH(OH)CN


What is the rate-determining step?


Consider the transition metal complex [CoCl3(CO)3]. What is a) The oxidation state of the metal centre. b) The dn configuration of the metal centre. c) The co-ordination number of the metal centre.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning