Answers>Maths>IB>Article

How can I apply the chain rule for differentiation?

The chain rule needs to be applied when you are differentiating a function f of x with respect to a variable t, x is a function of (i.e. given f(x) and x(t), you want to calculate df/dt. 

To do so you will have to do as follows: df/dt = df/dx * dx/dt.
This will take you to the right solution.

LR
Answered by Luca R. Maths tutor

1590 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Find the coordinates of the minimum or maximum of the function f(x) = 3x^2 -2x +9 and determine if it's a minimum or maximum.


What is the limit for this function as x approaches 0? y(x)=(cos x)^(1/sin x)


Having x(x+4)=y, calculate dy/dx


When the polynomial 3x^3 +ax+ b is divided by x−2 , the remainder is 2, and when divided by x +1 , it is 5. Find the value of a and the value of b.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning