Answers>Maths>IB>Article

How can I apply the chain rule for differentiation?

The chain rule needs to be applied when you are differentiating a function f of x with respect to a variable t, x is a function of (i.e. given f(x) and x(t), you want to calculate df/dt. 

To do so you will have to do as follows: df/dt = df/dx * dx/dt.
This will take you to the right solution.

LR
Answered by Luca R. Maths tutor

1451 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Given the parametric equations x = lnt+t and y = sint calculate d^2y/dx^2


Given 2x^2-3y^2=2, find the two values of dy/dx when x=5.


Differentiate x^3 + y^4 = 34 using implicit differentiation


The points {3,3,0}, {0,6,3} and {6,6,7} all lie on the same plane. Find the Cartesian equation of the plane.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences