If y=x^3+9x, find gradient of the tangent at (2,1).

To find the gradient of the tangent, we can differentiate to give dy/dx=3x^2+9. We can now put in x=2 to find the gradient at (2,1): 3(2)^2+9=21. Therefore the gradient is 21 at (2,1).

AM
Answered by Angus M. Further Mathematics tutor

2562 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

find the stationary point of the curve for the equation y=x^2 + 3x + 4


In the expansion of (x-7)(3x**2+kx-3) the coefficient of x**2 is 0. i) Find the value of k ii) Find the coefficient of x. iii) write the fully expanded equation in terms of x


Find the coordinates of any stationary points of the curve y(x)=x^3-3x^2+3x+2


The coefficient of the x^3 term in the expansion of (3x + a)^4 is 216. Find the value of a.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning