A mass, m, is resting on a slope being slowly tilted upwards from horizontal. The static friction co-efficient is 0.3 and the dynamic friction co-efficient is 0.2: at what angle will the mass begin to slip?

The static friction force holding the object on the slope is given by Fr where R = mg by Newton's second law of motion. We use a < sign as the static friction is a reaction force And the force dragging it down the slope is the component of the weight parrallel to the slope given by W(par)=mgsin(theta) While horizontal, the mass will not slip down the slope as sin(0)=0 so W(par)=0 - there is no force acting in this direction. The mass will slip when the component of the weight acting down the slope exceeds the force available from friction. So the angle we are looking for is when: Fr = W(par) Thus we re-write the equations above as: u(s)mgcos(theta) = mgsin(theta) if we divide by cos(theta) and move all the constants to the other side we have: tan(theta) = u(s)mg/(mg) the mg cancels out and we are left with: theta = tan^-1(u(s)) theta=11.3 degrees The dynamic friction will limit the movement of the mass once it moves from rest, and so the same calculation needs to be repeated with the dynamic friction co-effictient to check that it is lower. However, since the co-efficient is smaller we know that this is uneccessary and the final answer is 11.3 degrees

AP
Answered by Amber P. Physics tutor

2578 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A wire has length l, cross-sectional area a, resistivity p and resistance R. It is compressed to a third of its original length but its volume and resistivity are constant. Show its new resistance is R/9.


Why does current split between branches of a parallel circuit, but voltage remains the same for each branch?


A car of mass m travelling with a velocity v comes to rest over a distance d in time t. The constant frictional force acting on the car while it is braking is found using:


How can a car be changing velocity yet not changing speed?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning