Explain why the first ionisation energy of sulfur is different from that of phosphorus.

The first ionisation energy is defined as, the amount of energy required to remove 1 mole of electrons from 1 mole of gaseous atoms to produce 1 mole of gaseous ions, with a single positive charge. (By determining the electron configuration of sulfur and phosphorous, we can determine the amount of energy required to remove 1 mole of electrons) E.g. the electron configuration for sulfur is 1s22s22p63s23p4, and for phosphorous it is 1s22s22p63s23p3. In sulfur, the 4 electrons in the 3p level, are all paired. While in phosphorus there are 2 paired electrons and 1 lone electron in the 3p level. Due to the electron repulsion of the paired electrons in sulfur, less energy is required to remove 1 mole of electrons from its sub-level, as there is less of an attraction of these electrons towards its nucleus. Therefore, the first ionisation energy for sulfur will be slightly lower than that of phosphorus, due to the paired electrons in its 3p sub-level.

LM
Answered by Lydia M. Chemistry tutor

81913 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

How do buffer solutions work and how do you calculate the pH of a buffer solution?


How can you tell what shape a molecule is going to be?


If we burn 3 moles of carbon in air (as per the equation), what mass (in grams) of carbon dioxide will be produced? What volume will this gas occupy at standard temperature and pressure?


What factors affect ionisation energy and how does each of them affect it?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning