Why does e^ix = cos(x) + isin(x)

If you look at the Taylor series expansion of ex: ex = 1 + x + x2/(2!) + x3/(3!) + x4/(4!)...

If you then make this eix, you get

1+ix - x2/(2!) - ix3/(3!) + x4/(4!)...

If we split this into real and imaginary, we see the real part is

1 - x2/(2!) + x4/(4!) - x6/(6!)...

The series expansion of cos(x) is

1 - x2/(2!) + x4/(4!) - x6/(6!)...

Therefore, the real part of eix is cos(x)

If we look at only the imaginary part of eix, we get

i(x - x3/(3!) + x5/(5!) - x/ (7!)

If we look at the series expansion of sin(x) we get

(x - x3/(3!) + x5/(5!) - x/ (7!)

Therefore the imaginary part of eix = sin(x)

Putting this together, we get eix = Re(eix) + Im(eix)

eix = cos(x) + isin(x)

JP
Answered by Jesse P. Further Mathematics tutor

7253 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Can you express 3 + 4j in polar form?


When using the method of partial fractions how do you choose what type of numerator to use and how do you know how many partial fractions there are?


You are given a polynomial f, where f(x)=x^4 - 14x^3 + 74 x^2 -184x + 208, you are told that f(5+i)=0. Express f as the product of two quadratic polynomials and state all roots of f.


How do you solve, dy/dx=(x^2+y^2)/xy?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning