Using the VSEPR theory, predict the shape of CCl4 and its approximate bond angles.

  1. Draw out the lewis structure of CCl4 by counting the number of valence electrons on each atom. C=4, Cl=7 therefore total valence electrons is 4+(7x4)=32 and total valence electron pairs is 16. 2. Determine the number of electron domains on the central atom from the lewis structure. This tells you the geometry that the molecule is based on. CCl4 has 4 electron domains and is therefore based on tetrahedral. 3. Determine the number of lone pairs on the central atom from the lewis structure. CCl4 has no lone pairs on the central carbon and is therefore of tetrahedral geometry. 4. Recall bond angles of tetrahedral geometry to be 109.5 degrees. There will be no deviation from this expected angle as all Cl atoms are the same and are thus repel each other equally. 
AM
Answered by Amy M. Chemistry tutor

50213 Views

See similar Chemistry IB tutors

Related Chemistry IB answers

All answers ▸

2HCl (aq)+CaCO3 (s)->H20(l)+CaCl2(aq)+CO2(g). If using 40cm^3 of 2.5mol.dm^-3 Hcl and 5.67g of CaCO3, determine the limiting reagent and how much CO2(g) could be theoretically produced by this reaction.


List the following compounds in order of increasing acidity in aqueous solution, giving reasons for your choices: HCl, HI, HBr, HF.


Forgot to put question for the interview


How can we determine the molecular and electron geometry of H2O?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences