Show that the sum from 1 to n of 1/(2n+1)(2n-1) is equal to n/(2n+1) by Induction

First we check that this is true for n=1: S1 = 1/(1x3)  which is equal to n/(2n+1) for n=1 therefore Sn = n/(2n+1) is true for n = 1. Next assume that it is true for n=k. Sk  = k/(2k+1). Now using this assumption we check that it is true for n=k+1: Sk+1 = Sk+ 1/(2(k+1) - 1)(2(k+1)+1). Rearranging this and substituting in k/(2k+1) for Sk we get Sk+1 = (k+1)/(2k+3) which is consistent with the original formula. Therefore we can say that since Sn = n/(2n+1) is true for n=1 and whenever it is true for n=k it is also true for n=k+1, it is true for all integer values of n larger than or equal to 1.

JF
Answered by Jamie F. Further Mathematics tutor

14790 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do I find the vector/cross product of two three-dimensional vectors?


When using the method of partial fractions how do you choose what type of numerator to use and how do you know how many partial fractions there are?


Differentiate arctan(x) with respect to x


Convert the general complex number z=x+iy to modulus-argument form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning