In terms of structure and bonding explain why the boiling point of magnesium is much higher than that of bromine?

Bromine is molecular, existing as Br2 molecules, wheras magnesium is metallic and therefore exists in a large macromolecular structure. In bromine there are strong INTERmolecular covalent bonds, but only weak INTRAmolecular Van der Waals forces. It is these weak INTRAmolecular forces that must be overcome for bromine to boil. Magnesium exists as a large macromolecular structure (ie.a large interconnected lattice NOT molecules) with strong metallic bonds between the Magnesium ions and the sea of delocalised electrons. In orser for magnesium to boil these strong metallic bonds must be broken. It takes more energy (in the form of heat) to overcome the stronger metallic bonds in magnesium than the weaker INTRAmolecular Van der Waals forces in bromine, therefore magnesium has a higher boiling point than bromine.

EB
Answered by Edwina B. Chemistry tutor

25725 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Devise a simple synthetic route to an amide from a carboxylic acid. Give a mechanism for the final step and explain why the reagents are not added 1:1 in the final step


Give and explain 2 of the anomalous properties of ice caused by hydrogen bonding (3)


Why dose sodium oxide have a high melting point?


Why does Benzene require a catalyst to react with Bromine whereas Phenol does not?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning