Answers>Maths>IB>Article

Show that the following system of equations has an infinite number of solutions. x+y+2z = -2; 3x-y+14z=6; x+2y=-5

Substitute values of one equation into another. 

(1) x+y+2z = -2; (2) 3x-y+14z=6; x+2y=-5 (3).

Substitute x in (1) and (2) from (3).

We get -y+2z=3 in (1). 

We get -7y+14z=21 in (3).

Since (3) is (1)*7, we can conclude that the system has infinite solutions.

ES
Answered by Egidijus S. Maths tutor

7788 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Find integer solutions for m - n(log3(2)) = 10(log9(6)).


The sixth term of an arithmetic sequence is 8 and the sum of the first 15 terms is 60. Find the common difference and list the first three terms.


A team of four is chosen from six married couples. If a husband and wife cannot both be on the team, in how many ways can the team be formed?


Solve the equation log(1-x) - log(x) = 1 where log() is the logarithmic function, base 10.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning