Answers>Maths>IB>Article

Show that the following system of equations has an infinite number of solutions. x+y+2z = -2; 3x-y+14z=6; x+2y=-5

Substitute values of one equation into another. 

(1) x+y+2z = -2; (2) 3x-y+14z=6; x+2y=-5 (3).

Substitute x in (1) and (2) from (3).

We get -y+2z=3 in (1). 

We get -7y+14z=21 in (3).

Since (3) is (1)*7, we can conclude that the system has infinite solutions.

ES
Answered by Egidijus S. Maths tutor

7760 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Prove by mathematical induction that (2C2)+(3C2)+(4C2)+...+(n-1C2) = (nC3).


Find the area under the curve of f(x)=4x/(x^2+1) form x = 0 to x = 2.


When integrating by parts, how do I decide which part of the integrand is u or f(x) and which dv or g'(x)?


Find the coordinates of the minimum or maximum of the function f(x) = 3x^2 -2x +9 and determine if it's a minimum or maximum.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning