Why do melting points decrease down the group 1 and increade down the group 7? (core syllabus: Periodicity)

Elements in the group one (i.e. alkali metals from lithium to francium) exhibit metallic bonding: the positive nuclei are held together thanks to the attraction to delocalised electrons. As the number of electron shells increases down the group, and consequently the atomic radii get bigger, the attraction between the nuclei and outer shell (valence) electrons decreases. Hence, the bonds are weaker and less energy is required to break them.

Elements in the group seven (i.e. the halides form fluorine to iodine) normally form diatomic covalently bound molecules. The only type of interaction between them are the London dispersion forces (momentary dipole interactions). The magnitude of London forces is proportional to the mass of the molecules, so as the molecular weights of the halides increase down the group, more energy is required to break the interactions between them.

PM
Answered by Paulina M. Chemistry tutor

77478 Views

See similar Chemistry IB tutors

Related Chemistry IB answers

All answers ▸

Explain why average bond enthalpies can be used for cyclohexane but not for benzene


What is a dative covalent bond?


Explain the bonding in benzene, and hence its greater stability


What is the structure of fluoroform (CFH3)? Does it have a dipole, explain your answer.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences