Estimate (!) the number of atoms in the Sun given that it takes the light about t=8.3 min to reach us.

Use the following constants: light speed in vacuum c=310^8 m/s , gravitational constant G=6.67408 × 10^{-11} m^3 kg^{-1} s^{-2} and Avogadro's constant A =6.02214086 × 10^{23} mol^{-1}.Assuming that Earth moves in an almost circular orbit we can equate centripetal force F1={mv^2}/{R} to the force from the Newton's law of gravity F2=G*{mM}/{R^2} such that F1=F2.Knowing the period of Earth's rotation to be around T= 365 days we can find Earth's orbital velocity in the following way: v={length of the orbit}/{period}={2piR}/{T}={2pict}/{T}. After equating forces and plugging in the expression for the velocity we have M={v^2R}/{G}={(2pi)^2*(ct)^3}/{GT^2}. We assume that the Sun is made up only from single hydrogen atoms (wich actually makes up about 71% of Sun's mass) which have molar mass of n=0.001 kg /mol. Now we find the number of moles of hydrogen in the Sun and multiply the answer by Avogadro's constant to get the number of atoms N={MA}/{n}={(2\pi)^2*(ct)^3A}/{GT^2n}. Now we just plug in the numbers and get the final value which should be of an order 10^57.Questions similar to this can be part of the interview when applying for physics or engineering degree at Oxbridge.

AV
Answered by Arnas V. Oxbridge Preparation tutor

1943 Views

See similar Oxbridge Preparation Mentoring tutors

Related Oxbridge Preparation Mentoring answers

All answers ▸

Does it matter which college I apply to?


How do I make my personal statement stand out in an Oxbridge application?


A projectile is fired vertically upwards from the ground. Does it take longer for the projectile to reach the apex of its trajectory or for the projectile to return from the apex back to the ground? Explain your reasoning. [Don't ignore air resistance]


What should I read in preparation for a Classics Interview at Cambridge?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences