Answers>Maths>IB>Article

Finding complex numbers using DeMoivre's Theorem

Find the cube roots of 21/2cis(pi/4)
21/2cis(pi/4+ 2pi k), for every integer k
By DeMoivre:
21/2
1/3cis((pi/4+ 2pi k)/3)321/6cis(pi/12+ 2/3pi *k)
Taking k=0,1,2 gives the three cube roots:z1= 21/6cis(pi/12) (k=0)z2= 21/6cis(3pi/4) (k=1)z3= 21/6cis(17pi/12) (k=2)

LR
Answered by Lisa R. Maths tutor

3163 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Find the constant term in the binomial expansion of (3x + 2/(x^2))^33


Given two functions f and g where f(x)=3x-5 and g(x)=x-2. Find: a) the inverse f^-1(x), b) given g^-1(x)=x+2, find (g^-1 o f)(x), c) given also that (f^-1 o g)(x)=(x+3)/3, solve (f^-1 o g)(x)=(g^-1 o f)(x)


How do I draw the graph of a function that is unfamiliar to me?


A geometric sequence has all its terms positive. The first term is 7 and the third term is 28.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences