Answers>Maths>IB>Article

Finding complex numbers using DeMoivre's Theorem

Find the cube roots of 21/2cis(pi/4)
21/2cis(pi/4+ 2pi k), for every integer k
By DeMoivre:
21/2
1/3cis((pi/4+ 2pi k)/3)321/6cis(pi/12+ 2/3pi *k)
Taking k=0,1,2 gives the three cube roots:z1= 21/6cis(pi/12) (k=0)z2= 21/6cis(3pi/4) (k=1)z3= 21/6cis(17pi/12) (k=2)

LR
Answered by Lisa R. Maths tutor

3210 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Why is (-1)*(-1)=1?


Prove that (sinx)^2 + (cosx)^2 = 1


The points {3,3,0}, {0,6,3} and {6,6,7} all lie on the same plane. Find the Cartesian equation of the plane.


How do radians work? Why can't we just keep working with degrees in school?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences