Answers>Maths>IB>Article

Finding complex numbers using DeMoivre's Theorem

Find the cube roots of 21/2cis(pi/4)
21/2cis(pi/4+ 2pi k), for every integer k
By DeMoivre:
21/2
1/3cis((pi/4+ 2pi k)/3)321/6cis(pi/12+ 2/3pi *k)
Taking k=0,1,2 gives the three cube roots:z1= 21/6cis(pi/12) (k=0)z2= 21/6cis(3pi/4) (k=1)z3= 21/6cis(17pi/12) (k=2)

LR
Answered by Lisa R. Maths tutor

3548 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Factorise z^3+1 into a linear and quadratic factor. Let y=(1+i√3)/2. Show that y is a cube root of -1. Show that y^2=y-1. Find the value of (1-y)^6.


The sum of the first and third term of a geometric sequence is 72. The sum to infinity of this sequence is 360, find the possible values of the common ratio, r.


How can we calculate the maximum and minimum points of a function?


How to integrate ∫〖3x/√(1-x^2 ) dx〗?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning