Use De Moivre's Theorem to show that if z = cos(q)+isin(q), then (z^n)+(z^-n) = 2cos(nq) and (z^n)-(z^-n)=2isin(nq).

De Moivre's Theorem states that if z = cos(q)+isin(q), then

zn = (cos(q)+isin(q))n = cos(nq)+isin(nq)

But then 

z-n = cos(-nq)+isin(-nq).

Now, cos(-p)=cos(p), as cosine is a symmetric (even) function, and sin(-p)=-sin(p), as sine is an anti-symmetric (odd) fuction. Thus,

z-n  = cos(nq)-isin(nq).

The rest is just algebra:

zn+z-n = [cos(nq)+isin(nq)]+[cos(nq)-isin(nq)] = 2cos(nq).

zn-z-n = [cos(nq)+isin(nq)]-[cos(nq)-isin(nq)] = 2isin(nq).

DA
Answered by Dorian A. Further Mathematics tutor

17406 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Explain why the equation tanx + cotx = 1 does not have real solutions.


Express sin(5theta) in terms of sin(theta) and powers of sin(theta) only.


Prove that ∑(1/(r^2 -1)) from r=2 to r=n is equal to (3n^2-n-2)/(4n(n+1)) for all natural numbers n>=2.


It is given that f(x) = 2sinhx+3coshx. Show that the curve y = f(x) has a stationary point at x =-½ ln(5) and find the value of y at this point. Solve the equation f(x) = 5, giving your answers exactly


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning