Use De Moivre's Theorem to show that if z = cos(q)+isin(q), then (z^n)+(z^-n) = 2cos(nq) and (z^n)-(z^-n)=2isin(nq).

De Moivre's Theorem states that if z = cos(q)+isin(q), then

zn = (cos(q)+isin(q))n = cos(nq)+isin(nq)

But then 

z-n = cos(-nq)+isin(-nq).

Now, cos(-p)=cos(p), as cosine is a symmetric (even) function, and sin(-p)=-sin(p), as sine is an anti-symmetric (odd) fuction. Thus,

z-n  = cos(nq)-isin(nq).

The rest is just algebra:

zn+z-n = [cos(nq)+isin(nq)]+[cos(nq)-isin(nq)] = 2cos(nq).

zn-z-n = [cos(nq)+isin(nq)]-[cos(nq)-isin(nq)] = 2isin(nq).

DA
Answered by Dorian A. Further Mathematics tutor

17069 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Two planes have eqns r.(3i – 4j + 2k) = 5 and r = λ (2i + j + 5k) + μ(i – j – 2k), where λ and μ are scalar parameters. Find the acute angle between the planes, giving your answer to the nearest degree.


What is the value of x from (x+2)^2=4


The roots of the equation z^3 + 2z^2 +3z - 4 = 0, are a, b and c . Show that a^2 + b^2 +c^2 = -2


Cube roots of 8?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning