Use De Moivre's Theorem to show that if z = cos(q)+isin(q), then (z^n)+(z^-n) = 2cos(nq) and (z^n)-(z^-n)=2isin(nq).

De Moivre's Theorem states that if z = cos(q)+isin(q), then

zn = (cos(q)+isin(q))n = cos(nq)+isin(nq)

But then 

z-n = cos(-nq)+isin(-nq).

Now, cos(-p)=cos(p), as cosine is a symmetric (even) function, and sin(-p)=-sin(p), as sine is an anti-symmetric (odd) fuction. Thus,

z-n  = cos(nq)-isin(nq).

The rest is just algebra:

zn+z-n = [cos(nq)+isin(nq)]+[cos(nq)-isin(nq)] = 2cos(nq).

zn-z-n = [cos(nq)+isin(nq)]-[cos(nq)-isin(nq)] = 2isin(nq).

DA
Answered by Dorian A. Further Mathematics tutor

16787 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find all the cube roots of 1


Define tanh(t) in terms of exponentials


Why does e^ix = cos(x) + isin(x)


Prove by induction that n^3+5n is divisible by 3 for every natural number.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning