Use De Moivre's Theorem to show that if z = cos(q)+isin(q), then (z^n)+(z^-n) = 2cos(nq) and (z^n)-(z^-n)=2isin(nq).

De Moivre's Theorem states that if z = cos(q)+isin(q), then

zn = (cos(q)+isin(q))n = cos(nq)+isin(nq)

But then 

z-n = cos(-nq)+isin(-nq).

Now, cos(-p)=cos(p), as cosine is a symmetric (even) function, and sin(-p)=-sin(p), as sine is an anti-symmetric (odd) fuction. Thus,

z-n  = cos(nq)-isin(nq).

The rest is just algebra:

zn+z-n = [cos(nq)+isin(nq)]+[cos(nq)-isin(nq)] = 2cos(nq).

zn-z-n = [cos(nq)+isin(nq)]-[cos(nq)-isin(nq)] = 2isin(nq).

DA
Answered by Dorian A. Further Mathematics tutor

16625 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

A golf ball is hit from horizontal ground with speed 10 m/s at an angle of p degrees above the horizontal. The greatest height the golf ball reached above ground level is 1.22m. Model the golf ball as a particle and ignore air resistance. Find p.


Evaluate ∫sin⁴(x) dx by expressing sin⁴(x) in terms of multiple angles


Evaluate (1 + i)^12


Solve the following complex equation: '(a + b)(2 + i) = b + 1 + (10 + 2a)i' to find values for 'a' and 'b'


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning