An excess of Lead (II) oxide reacts with 175cm3 of 1.5 mol dm3 nitric acid. Calculate the maximum quantity of lead that can be obtained from this reaction.

Write the equation: PbO + HNO3 --> PbNO3 + H2O. Balance the equation: there are two moles of hydrogen (in water) on the right. To balance the hydrogens, two moles of hydrogen are needed on the left to HNO3. PbO + 2HNO3 --> PbNO3 + H2O. Now we have two moles of nitrogen and six moles of oxygen in 2HNO3 (on the left); we need to balance this by adding two moles to the right. PbO + 2HNO3 --> Pb (NO3)2 + H2O. Once we have written and balanced the equation, we can move to the next part of the question. Find the moles of HNO3: Volume of nitric oxide =175 x 10-3   Concentration of nitric oxide= 1.5 mol dm3. Moles of HNO3 = 175 x 10-3 x 1.5= 0.2625 moles. Find the moles of Pb(NO3) 2: as there were two moles of HNO3 (see balanced equation above), we can work out the moles of Pb(NO3)2 by dividing the moles of HNO3 by two, 0.2625/2=0.131 moles of Pb(NO3)2. Work out the Mr of Pb(NO3)2: 207.2+ (16 x 61) + (2 x 14) = 331.2g mol-1. Work out the mass of Pb(NO3) 2: mass= mole x Mr 0.131 x 331.2 = 43.5g The maximum quantity of lead that can be obtained from the reaction is 43.5 grams.

HS
Answered by Hibba S. Chemistry tutor

9334 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

A buffer solution is made with a pH of 5.000. Solid sodium ethanoate, CH3COONa, is added to 400 cm^3 of 0.200 mol dm^–3 ethanoic acid (Ka = 1.75 × 10^–5 mol dm^–3). Calculate the mass of sodium acetate that must be dissolved in the acid to prepare this


When 80.0cm^3 of 0.500 M hydrochloric acid was added to 1.75g of impure CaCO3, not all HCl reacts. The unreacted HCl required 22.4 cm^3 of a 0.500 M solution of NaOH for complete reaction. Calculate percentage by mass of CaCO3 in the impure sample.


Explain the shapes of the molecules NH3 and AlCl3 (using diagrams)


How does Hydrogen bonding arise in Water?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning