Answers>Maths>IB>Article

Prove by mathematical induction that (2C2)+(3C2)+(4C2)+...+(n-1C2) = (nC3).

Firstly, show the equation is true for n = 3 (as this is the samllest n that nC3 is defined): LHS = (2C2) = 1 = (3C3) = RHStherefore, true for n=3.
Then assume true for n = k:(2C2)+(3C2)+(4C2)+...+(k-1C2) = (kC3).
Concider n = k-1:(2C2)+(3C2)+(4C2)+...+(k-1C2)+(kC2) = (kC3)+(kC2) = [k!/(k-3)!3!] + [k!/(k-2)!2!] = (k!/3!)[(1/(k-3)!)+3/(k-2)!] = (k!/3!)[(k-2+3)/(k-2)!] = (k!/3!)[(k+1)/(k-2)!] = [(k+1)!/3!(k-2)!] = (k+1)C3
Equation is true for n = 3. If true for n = k, it is true for n = k+1. Therefore the equation is true for all n >= 3 by induction.

HX
Answered by Henry X. Maths tutor

16037 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

When the polynomial 3x^3 +ax+ b is divided by x−2 , the remainder is 2, and when divided by x +1 , it is 5. Find the value of a and the value of b.


Find the coordinates and determine the nature of the stationary points of curve y=(2/3)x^3+2x^2-6x+3


Differentiate x^3 + y^4 = 34 using implicit differentiation


Differentiation from first principles


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning