Answers>Maths>IB>Article

Prove by mathematical induction that (2C2)+(3C2)+(4C2)+...+(n-1C2) = (nC3).

Firstly, show the equation is true for n = 3 (as this is the samllest n that nC3 is defined): LHS = (2C2) = 1 = (3C3) = RHStherefore, true for n=3.
Then assume true for n = k:(2C2)+(3C2)+(4C2)+...+(k-1C2) = (kC3).
Concider n = k-1:(2C2)+(3C2)+(4C2)+...+(k-1C2)+(kC2) = (kC3)+(kC2) = [k!/(k-3)!3!] + [k!/(k-2)!2!] = (k!/3!)[(1/(k-3)!)+3/(k-2)!] = (k!/3!)[(k-2+3)/(k-2)!] = (k!/3!)[(k+1)/(k-2)!] = [(k+1)!/3!(k-2)!] = (k+1)C3
Equation is true for n = 3. If true for n = k, it is true for n = k+1. Therefore the equation is true for all n >= 3 by induction.

HX
Answered by Henry X. Maths tutor

14923 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Solve the equation sec^2 x + 2tanx = 0 , 0 ≤ x ≤ 2π, question from HL Maths exam May 2017 TZ1 P1


The normal to the curve x*(e^-y) + e^y = 1 + x, at the point (c,lnc), has a y-intercept c^2 + 1. Determine the value of c.


Solve the equation (2 cos x) = (sin 2 x) , for 0 ≤ x ≤ 3π .


The sum of the first and third term of a geometric sequence is 72. The sum to infinity of this sequence is 360, find the possible values of the common ratio, r.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences