Answers>Maths>IB>Article

Prove by mathematical induction that (2C2)+(3C2)+(4C2)+...+(n-1C2) = (nC3).

Firstly, show the equation is true for n = 3 (as this is the samllest n that nC3 is defined): LHS = (2C2) = 1 = (3C3) = RHStherefore, true for n=3.
Then assume true for n = k:(2C2)+(3C2)+(4C2)+...+(k-1C2) = (kC3).
Concider n = k-1:(2C2)+(3C2)+(4C2)+...+(k-1C2)+(kC2) = (kC3)+(kC2) = [k!/(k-3)!3!] + [k!/(k-2)!2!] = (k!/3!)[(1/(k-3)!)+3/(k-2)!] = (k!/3!)[(k-2+3)/(k-2)!] = (k!/3!)[(k+1)/(k-2)!] = [(k+1)!/3!(k-2)!] = (k+1)C3
Equation is true for n = 3. If true for n = k, it is true for n = k+1. Therefore the equation is true for all n >= 3 by induction.

HX
Answered by Henry X. Maths tutor

16041 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

How to find a modulus and argument of w that is a quotient of z1 and z2 such that z1 = 1 + root(3)i and z2 = 1+ i using modulus-argument form?


The sum of the first n terms of an arithmetic sequence is Sn=3n^2 - 2n. How can you find the formula for the nth term un in terms of n?


Given 1/2 + 1 + 2 + 2^2 + ... + 2^10 = a*2^b + c, find the values of a,b,c.


How do i solve simultaneous equation with more than two equations and two unknowns?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning