Answers>Maths>IB>Article

Prove by mathematical induction that (2C2)+(3C2)+(4C2)+...+(n-1C2) = (nC3).

Firstly, show the equation is true for n = 3 (as this is the samllest n that nC3 is defined): LHS = (2C2) = 1 = (3C3) = RHStherefore, true for n=3.
Then assume true for n = k:(2C2)+(3C2)+(4C2)+...+(k-1C2) = (kC3).
Concider n = k-1:(2C2)+(3C2)+(4C2)+...+(k-1C2)+(kC2) = (kC3)+(kC2) = [k!/(k-3)!3!] + [k!/(k-2)!2!] = (k!/3!)[(1/(k-3)!)+3/(k-2)!] = (k!/3!)[(k-2+3)/(k-2)!] = (k!/3!)[(k+1)/(k-2)!] = [(k+1)!/3!(k-2)!] = (k+1)C3
Equation is true for n = 3. If true for n = k, it is true for n = k+1. Therefore the equation is true for all n >= 3 by induction.

HX
Answered by Henry X. Maths tutor

16043 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

IB exam question: Let p(x)=2x^5+x^4–26x^3–13x^2+72x+36, x∈R. For the polynomial equation p (x) = 0 , state (i) the sum of the roots; (ii) the product of the roots.


f(x)=(2x+1)^0.5 for x >-0.5. Find f(12) and f'(12)


Solve the equation log2(x + 3) + log2(x - 3) = 4


Find out the stationary points of the function f(x)=x^2*e^(-2x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning