Answers>Maths>IB>Article

The normal to the curve x*(e^-y) + e^y = 1 + x, at the point (c,lnc), has a y-intercept c^2 + 1. Determine the value of c.

We firstly need to find the slope of the line normal to the curve at the point (c, lnc). To do this, we will differentiate implicitly the equation of the curve to find the slope of the tangent. By implicit differentiation we get : (e^-y )- x*(e^-y)dy/dx + (e^y)dy/dx = 1. By rearranging we get : slope of tangent = dy/dx = (1-(e^-y))/(e^y -x(e^-y)) (1). Since we want to find the slope of the tangent at the point (c,lnc) we plug into (1) x = c and y = lnc. We get that dy/dx = 1/c. We know that slope of normal = -1/slope of tangent, so we get that slope of normal at (c,lnc) = -c.We will now use the value of the y-intercept given. The equation of a line passing through a point, say (a,b) is given by y-b = slope(x-b). We have that the normal line at (c,lnc) has slope -c and also passes through the point (0, c^2 + 1). So we get that lnc - c^2 - 1 = (-c)* (c) and since two terms cancel out, we have that lnc = 1 implying that c = e.

KA
Answered by Katerina A. Maths tutor

6944 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

If the fourth term in an arithmetic sequence is, u4 = 12.5, the tenth is u10 = 27.5. Find the common difference and the 20th term.


What does a derivative mean and why does setting it equal to zero allow us to find the minima/maxima of a function


How does proof by induction work?


Find the first and second order derivative of the function, F(x)= 3x^3 - 7 + 5x^2, and then identify the maximum or minimum points.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning