Answers>Maths>IB>Article

Find the coordinates and determine the nature of the stationary points of curve y=(2/3)x^3+2x^2-6x+3

  1. Stationary points occur when dy/dx=0, therefore determine dy/dx first:
    dy/dx= 2x2 + 4x - 6
    2) solve dy/dx=0 for two values of x (using quadratic formula, if necessary):
    (x+3)(x-1)=0 --> x= 1, -3
    3) to determine the nature of the stationary points, second derivative is needed:
    d2y/dx2= 4x + 4
    4) substitute x-coordinates of stationary points from step 2 into secondary derivative to determine their nature:
    x= 1 --> d2y/dx2= 8 > 0 therefore relative minimum
    x= -3 --> d2y/dx2= -8 < 0 therefore relative maximum
    5) substitute x-coordinates of stationary points from step 2 into y to get full coordinates:
    y(1) = -1/3 --> (1, -1/3) is a rel. min.
    y(-3) = 21 --> (-3, 21) is a rel. max.
BV
Answered by Barbora V. Maths tutor

3015 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Two functions, y1 & y2, are given by y1=x^2+16x+4; y2=2(3x+2). Find analytically the volume of the solid created by revolving the area between the two curves by 2pi radians around the x-axis. N.B. y2>y1 on the interval between the points of intersection.


Solve the equation log2(x + 3) + log2(x - 3) = 4


(a) Find the set of values of k that satisfy the inequality k^2 - k - 12 < 0. (b) We have a triangle ABC, of lengths AC = 4 and BC = 2. Given that cos B < 1/4 , find the range of possible values for AB:


Let f (x) = sin(x-1) , 0 ≤ x ≤ 2 π + 1 , Find the volume of the solid formed when the region bounded by y =ƒ( x) , and the lines x = 0 , y = 0 and y = 1 is rotated by 2π about the y-axis.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences