Answers>Maths>IB>Article

Find the coordinates and determine the nature of the stationary points of curve y=(2/3)x^3+2x^2-6x+3

  1. Stationary points occur when dy/dx=0, therefore determine dy/dx first:
    dy/dx= 2x2 + 4x - 6
    2) solve dy/dx=0 for two values of x (using quadratic formula, if necessary):
    (x+3)(x-1)=0 --> x= 1, -3
    3) to determine the nature of the stationary points, second derivative is needed:
    d2y/dx2= 4x + 4
    4) substitute x-coordinates of stationary points from step 2 into secondary derivative to determine their nature:
    x= 1 --> d2y/dx2= 8 > 0 therefore relative minimum
    x= -3 --> d2y/dx2= -8 < 0 therefore relative maximum
    5) substitute x-coordinates of stationary points from step 2 into y to get full coordinates:
    y(1) = -1/3 --> (1, -1/3) is a rel. min.
    y(-3) = 21 --> (-3, 21) is a rel. max.
BV
Answered by Barbora V. Maths tutor

3043 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Find the intersection point/s of the equations x²+7x-3 and 3x+4


log_10⁡((1/(2√2))*(p+2q))=(1/2)(log_10⁡p+log_10⁡q),p,q>0,find p in terms of q.


The sum of the first and third term of a geometric sequence is 72. The sum to infinity of this sequence is 360, find the possible values of the common ratio, r.


Given that w=x * e^-w use implicit differentiation to show that dw/dx=1/(e^w + x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences