Using Newton's law of universal gravitation, show that T^2 is proportional to r^3 (where T is the orbital period of a planet around a star, and r is the distance between them).

(Lets consider a simple planetary system composed of a planet orbiting a star. the gravitational force between the two is given by F=(GMm)/(r2). Assuming the planet also moves in a circular orbit, we can consider the centripetal force, F=mω2r. As both gravitational and centripetal forces act in the same direction, we can equate them to find (GMm)/(r2)=mω2r.
We note that 'm' cancels and we can divide through by 'r' to arrive at GM/r32. ω is simply angular frequency given by ω =2π/T. Substituting this into our expression we find that GM/r3= 4π2/T2.After some simple rearranging, we note that  T=(4π2r3)/(GM). So  T2 is indeed proportional to  r3 . This simple statement is known as Kepler's third law of planetary motion.

KS
Answered by Karanvir S. Physics tutor

24948 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the general equation for the alpha-decay of a nucleus X, with nucleon number A and proton number Z, into nucleon Y??


A DVD is dropped from rest. The DVD does not reach terminal velocity before it hits the ground. Explain how the acceleration of the DVD varies from the instant it is dropped until just before it hits the ground.


Two people sit opposite each other on the edge of a rotating disk of radius, R, and negligible mass. One person has a mass of 40kg, the other of 50kg. The disk is rotating at 30 revs/min. What is the rotational kinetic energy if R=1.5m?


Name the four fundamental forces.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences