The bond angle in a molecule of ammonia (NH3) is 107 degrees so why, when part of a transition metal complex is the bond angle 109.5 degrees.

Ammonia is based off a tetrahedral shape, the central Nitrogen atom has 4 valence (outer) pairs of electrons, 3 in covalent bonds with Hydrogen atoms and one "lone pair" which are not bonded. The tetrahedral shape has bond angles of 109.5 degrees, but the lone pair exists closer to the nucleus than the bonding pairs and has a greater repulsive effect than the three bonding pairs, therefore pushing them closer together and decreasing the bond angle by 2.5 degrees. When in a transition metal complex the lone pair is co-ordinately (dative covalently) bonded to the central metal atom to form the transition metal complex. This means that all four valence pairs are bonding and have therefore equal repulsive effects, meaning that the bond angles are equal at 109.5 degrees.

Answered by Daniel W. Chemistry tutor

48630 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Describe briefly the nature of metallic bonding and use this to explain why metals are malleable (can be hammered into shape) and conduct electricity


You have 3.51g of hydrated zinc sulphate. You heat up the zinc sulphate until all the water has evaporated from it. The weight after heating is 1.97g. Find how many H2O molecules per zinc sulphate molecule there are in the hydrated form of it.


Plan out a 4 step organic synthesis to form N-methyl Butanamide from 1-Bromopropane. Include relevant reagents and conditions for each reaction. Include 1 mechanism for one of the stages.


What are the different types of intermolecular forces?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy