Derive an expression to show that for satellites in a circular orbit T^2 ∝ r^3 where T is the period of orbit and r is the radius of the orbit.

This question is concerned with balancing forces. First, we must consider what forces are acting on the satellites. What is stopping the satellite from shooting off into space and what is preventing it from falling into the object it is orbiting. In this case, the two forces acting on it are a gravitational force and a centripetal force. Since it is a circular orbit we know both of these are equal at all times. Hence we must balance these two forces:
Gravitational force = GmM/r^2Centripetal force = mr(2PiT)^2
Hence, mr(2Pi/T)^2 = GmM/r^2.r(2Pi/T)^2 = GM/r^2 (cancelled the equal mass m)r(4Pi^2)/T^2 = GM/r^2 (expand out the bracket).r^3(4Pi^2) = GM*T^2 (rearrange T and r)We are looking for a proportionality, hence we can remove any constants. Here,Pi,G and M are all constants. Hence, we are left with T^2 is proportional to r^3




CM
Answered by Charlie M. Physics tutor

9765 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Why does an electric drill heat up when passing through metal compared to in thin air?


What is the angular velocity of a car wheel which diameter is d = 15 mm if the car velocity is of 120 km/h?


If the force between two point charges of charge 'Q1' and 'Q2' which are a distance 'r' apart is 'F' then what would the force be if the charge of 'Q1' is tripled and the distance between them doubled?


What is the maximum length a bungee rope with a spring constant of 100 Nm−1 can be for an 80kg man to be able to jump from 100m above a river without touching the water?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning