Derive an expression to show that for satellites in a circular orbit T^2 ∝ r^3 where T is the period of orbit and r is the radius of the orbit.

This question is concerned with balancing forces. First, we must consider what forces are acting on the satellites. What is stopping the satellite from shooting off into space and what is preventing it from falling into the object it is orbiting. In this case, the two forces acting on it are a gravitational force and a centripetal force. Since it is a circular orbit we know both of these are equal at all times. Hence we must balance these two forces:
Gravitational force = GmM/r^2Centripetal force = mr(2PiT)^2
Hence, mr(2Pi/T)^2 = GmM/r^2.r(2Pi/T)^2 = GM/r^2 (cancelled the equal mass m)r(4Pi^2)/T^2 = GM/r^2 (expand out the bracket).r^3(4Pi^2) = GM*T^2 (rearrange T and r)We are looking for a proportionality, hence we can remove any constants. Here,Pi,G and M are all constants. Hence, we are left with T^2 is proportional to r^3




CM
Answered by Charlie M. Physics tutor

9971 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Two pendulums consist of a massless rigid rod of equal length attached to a small sphere of equal radius, with one sphere hollow for one pendulum and the other solid. Each pendulum undergoes damped SHM. Which pendulum has the largest time period?


State similarity and difference between the electric field lines and the gravitational field lines around an isolated positively charged metal sphere.


A cylindrical rod of radius 7mm and Young’s Modulus 70 GPa has a weight F applied to it. The material experiences a strain of 0.2%. What force has been applied?


3 resistors, R1, R2 and R3 are attached in parallel across a 6V cell with resistances 3, 4 and 5 Ohms respectively. Calculate the current across each resistor.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning