Derive an expression to show that for satellites in a circular orbit T^2 ∝ r^3 where T is the period of orbit and r is the radius of the orbit.

This question is concerned with balancing forces. First, we must consider what forces are acting on the satellites. What is stopping the satellite from shooting off into space and what is preventing it from falling into the object it is orbiting. In this case, the two forces acting on it are a gravitational force and a centripetal force. Since it is a circular orbit we know both of these are equal at all times. Hence we must balance these two forces:
Gravitational force = GmM/r^2Centripetal force = mr(2PiT)^2
Hence, mr(2Pi/T)^2 = GmM/r^2.r(2Pi/T)^2 = GM/r^2 (cancelled the equal mass m)r(4Pi^2)/T^2 = GM/r^2 (expand out the bracket).r^3(4Pi^2) = GM*T^2 (rearrange T and r)We are looking for a proportionality, hence we can remove any constants. Here,Pi,G and M are all constants. Hence, we are left with T^2 is proportional to r^3




Answered by Charlie M. Physics tutor

8090 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Topic - force as rate of change of momentum; (i) force on a wall due to water from a hose, (ii) force on a table as a rope is dropped onto it.


The electric potential energy of two protons is 1.0MeV. Calculate their separation


A diver of mass 60kg stands on the end of a diving board (2m in length). Calculate the upward force exerted on the retaining spring which is 30cm from the start of the diving board.


People A and B are taking a lift of mass 500 kg which has constant acceleration and the force from the rope that pulls it is 7500 N. The scales where the people stand show a reading of 720 N and 500 N.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy