Why is a nucleophilic substitution reaction between ammonia and benzene unlikely?

A nucleophilic substitution reaction is when a nucleophile (an electron pair donor) replaces an atom or part of a molecule. In this scenario ammonia (NH3) is the nucleophile as it contains a lone pair of electrons on the nitrogen atom and it is trying to replace something from benzene. However benzene contains a ring of delocalised electrons that exists either above or below the planar carbon ring. This is a region of high electron density that will repel other electrons. Hence ammonia cannot attack benzene as the lone pair of electrons in an ammonia molecule are repelled away by the ring of delocalised electrons. This makes a reaction between the two heavily unlikely and it also explains why benzene usually undergoes electrohilic substitution reactions as opposed to nucleophilic substitution as only a strong electrophile (electron pair acceptor) is capable of being attracted to the benzene ring.

AS
Answered by Archit S. Chemistry tutor

10635 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Chlorobenzene can be produced by electrophilic substitution of benzene? Draw the mechanism for this?


How do amino acids change at different pH?


Bethan prepared some ethoxyethane (line 6) by reacting ethanol with concentrated sulfuric acid. She used 69g of ethanol (Mr=46) and obtained a 45% yield of ethoxyethane (Mr=74). Calculate the mass of ethoxyethane obtained.


How do you calculate the equilibrium constant, Kc, of a reaction?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning