Differentiate x^x

Write y = x^x , then we need to find dy/dx. Take the natural logarithm of both sides to give ln(y) = ln (x^x). Using log laws we can write the RHS as x ln (x). Now differentiate both sides with respect to x. The left hand side needs implicit differentiation so differentiate ln(y) with respect to y and then multiply it by dy/dx so the LHS is now 1/y * dy/dx . Use the product rule on the RHS to get ln x +1 on the RHS. now we have 1/y *dy/dx = ln(x) +1 . Multiply through by y to get dy/dx = y(ln(x) +1) then use the fact that y = x^x to finally write that dy/dx = (ln(x) +1)*x^x

WH
Answered by William H. STEP tutor

1151 Views

See similar STEP University tutors

Related STEP University answers

All answers ▸

Given a differential equation (*), show that the solution curve is either a straight line or a parabola and find the equations of these curves.


Find h(x), for x≠0, x≠1, given that: h(x)+h(1/(1−x))=1−x−1/(1−x)


Show that i^i = e^(-pi/2).


Let y=arcsin(x)/sqrt(1-x^2). Show that (1-x^2) y'-xy-1=0, and prove that, for all integers n>=0, (1-x^2)y^{n+2}-(2n+3)xy^{n+1} -(n+1)^2 y^{n}=0. (Superscripts denote repeated differentiation)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning