Differentiate x^x

Write y = x^x , then we need to find dy/dx. Take the natural logarithm of both sides to give ln(y) = ln (x^x). Using log laws we can write the RHS as x ln (x). Now differentiate both sides with respect to x. The left hand side needs implicit differentiation so differentiate ln(y) with respect to y and then multiply it by dy/dx so the LHS is now 1/y * dy/dx . Use the product rule on the RHS to get ln x +1 on the RHS. now we have 1/y *dy/dx = ln(x) +1 . Multiply through by y to get dy/dx = y(ln(x) +1) then use the fact that y = x^x to finally write that dy/dx = (ln(x) +1)*x^x

WH
Answered by William H. STEP tutor

1008 Views

See similar STEP University tutors

Related STEP University answers

All answers ▸

Show that if a polynomial with integer coefficients has a rational root, then the rational root must be an integer. Hence, show that x^n-5x+7=0 has no rational roots.


Find all positive integers n such that 12n-119 and 75n-539 are both perfect squares. Let N be the sum of all possible values of n. Find N.


Prove that any number of the form pq, where p and q are prime numbers greater than 2, can be written as the difference of two squares in exactly two distinct ways.


Let p and q be different primes greater than 2. Prove that pq can be written as difference of two squares in exactly two different ways.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences