A charged particle in a cyclotron moves in a circle with radius 5mm. If the field in the cyclotron is 0.06 T and the velocity of the particle is 2.4x10^7, what is the charge-mass ratio of the particle?

Firstly, we should equate the centripetal force to the force on a moving charge using equations from our formula booklet: (force on a moving charge): F = Bqv(centripetal force): F = mv2/rmv2/r = Bqvwhen we cancel the 'v's' we get:mv/r = Bqmultiply both sides by r to get: Bqr = mvdivide through by m and divide through by 'Br' to get: q/m = v/BrThis now gives us an equation for the charge mass ratio (q/m) as: v/BrNow, substitute in your given values for v (velocity), B (magnetic field strength) and r (radius), ensuring you use the correct index form. 2.4x10^7 / (0.06 x 5x10^-3) = 8x10^10 = q/m

PV
Answered by Preshayla V. Physics tutor

2178 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

What is the wavelength of a wave?


Using standard formulae, derive an expression for the final speed of a falling object in terms of its change in height. Assume zero air resistance or other resistive forces.


A rollercoaster carriage of mass 100kg has 45kJ of Kinetic Energy at the lowest point of its ride. Ignoring air resistance and friction between the wheels and the tracks, what is the maximum height above this point it could reach? [Take g as 10m/s/s)


which part of the electromagnetic spectrum provides most of the energy to heat the water in a solar thermal power station?, how does this heated water allow electricity to be generated?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences