A curve is defined by the equation y = (x + 3)(x – 4). Find the coordinates of the turning point of the curve.

The turning point of a curve is the point at which it will turn, therefore, either the maximum or minimum point. Firstly, you need to expand out the brackets so the equation looks like a standard curve equation. When expanded, the equation will be y = x2 – x – 12. The turning point will be when dy/dx is equal to 0.Therefore when the curve equation is differentiated you get 2x - 1 . Set this to 0.When solved, x will equal 0.5 . This is the x coordinate of the turning point. You need to find the y coordinate as well. To do this, fill 0.5 back into the original curve equation where an x is. The equation will now read, y = 0.25 - 0.5 - 12 . Y will equal -12.25 . Therefore the turning point will be at (0.5, -12.25) . You have now finished the question.

CM
Answered by Clare M. Further Mathematics tutor

3071 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

A curve is mapped by the equation y = 3x^3 + ax^2 + bx, where a is a constant. The value of dy/dx at x = 2 is double that of dy/dx at x = 1. A turning point occurs when x = -1. Find the values of a and b.


Find the gradient of the line x^2 + 3x - 6 at the point (5,34)


Point A lies on the curve: y=x^2+5*x+8. The x-coordinate of A is -4. What is the equation of the normal to the curve at A?


Rationalise and simplify (root(3) - 7)/(root(3) + 1) . Give your answer in the form a + b*root(3) where a, b are integers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning