A curve is defined by the equation y = (x + 3)(x – 4). Find the coordinates of the turning point of the curve.

The turning point of a curve is the point at which it will turn, therefore, either the maximum or minimum point. Firstly, you need to expand out the brackets so the equation looks like a standard curve equation. When expanded, the equation will be y = x2 – x – 12. The turning point will be when dy/dx is equal to 0.Therefore when the curve equation is differentiated you get 2x - 1 . Set this to 0.When solved, x will equal 0.5 . This is the x coordinate of the turning point. You need to find the y coordinate as well. To do this, fill 0.5 back into the original curve equation where an x is. The equation will now read, y = 0.25 - 0.5 - 12 . Y will equal -12.25 . Therefore the turning point will be at (0.5, -12.25) . You have now finished the question.

CM
Answered by Clare M. Further Mathematics tutor

3440 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

Given a^2 < 4 and a+2b = 8. Work out the range of possible values of b. Give your answer as an inequality.


f'(x) = 3x^2 - 5cos(3x) + 90. Find f(x) and f''(x).


What is the equation of a circle with centre (3,4) and radius 4?


f(x) = 3x^3 – x^2 – 20x – 12 (a) Use the factor theorem to show that (3x + 2) is a factor of f(x). [2 marks] (b) Factorise f(x) fully. [3 marks]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning