Answers>Maths>IB>Article

H(x)=(x^3)*(e^x) what is H'(x)

Using the product rule H(X) = f(x)*g(x) and H'(X) = f'(x)*g(x) + f(x)*g'(x) Where, in this case f(x) = x3 and g(x) = ex We can easily determine the derivative of the above function.f'(x) = 3x2 and g'(x) = ex.We now have all the components required to formulate the final answer. H'(x) = ex*3x2 + ex*x3Which can finally be simplified to: H'(x) = exx2 (3+x)

AF
Answered by Antonio F. Maths tutor

1473 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Find the coordinates and determine the nature of the stationary points of curve y=(2/3)x^3+2x^2-6x+3


Let f(x)=x^2-ax+a-1 and g(x)=x-5. The graphs of f and g intersect at one distinct point. Find the possible values of a.


Differentiate x^3 + y^4 = 34 using implicit differentiation


a) Let u=(2,3,-1) and w=(3,-1,p). Given that u is perpendicular to w, find the value of p. b)Let v=(1,q,5). Given that modulus v = sqrt(42), find the possible values of q.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences