A box is at rest on a slope with an angle ϴ. Find an expression for the static friction coefficient, μ, of the box.

Begin by drawing a diagram with all the vectors that act on the box. This should include the normal vector (N), the weight of the box (G), and the static friction force (Fs). Write down the equation for the static friction force (Fs = μN). Using Newton's Second Law of Motion, the forces acting on a static body will equal zero and thus the component of vector G that's parallel to the slanted plane, Gx, will equal Fs. Similarly the perpendicular G component, Gy, will be equal to N. To find Gx and Gy, a straight triangle is drawn connecting vector G and its components. The triangle is similar to that of the slope in the original diagram with the angle between Gy and G being ϴ. Inspecting the triangle we find that Gx = Gsin(ϴ) and Gy = G*cos(ϴ). by substituting everything into Fs , we receive: μ = sin(ϴ)/cos(ϴ) = tan(ϴ).

OL
Answered by Oliver L. Physics tutor

4328 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

A plane is entering a turn, identify the main forces acting on it (including central forces)


A ball of mass 500g is dropped from rest 2m above the ground. When it reaches the ground it is travelling at 5m/s. How much energy has been dissipated?


What is red shift?


A ball of mass 1kg is rolled down a hill of height 10m. At the bottom it collides with another ball of mass 5kg. What speed does the second ball move away with? You can assume the collision between the balls is elastic.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning