Given that α= 1+3i is a root of the equation z^3 - pz^2 + 18z - q = 0 where p and q are real, find the other roots, then p and q.

All coefficients of z are real, therefore one root must be the complex conjugate so β = 1-3i.It is known that Σαβ = 18 (the coefficient of z), so we can get an equation in the third root, γ, as follows: Σαβ = αβ+αγ+βγ = (1+3i) (1-3i) + (1+3i)γ + (1-3i)γ = 18. Rearranging this we get γ = 4.To find p we use Σα = α+β+γ = 1+3i +1-3i + 4 = -p. Rearranging this we get that p=6. To find q we use Σαβγ = αβγ = (1+3i) (1-3i) (4) = -q. Rearranging this we get that q=-40.

ZG
Answered by Zachary G. Further Mathematics tutor

4587 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Write the Maclaurin’s series for f(x)=sin(3x)+e^x up to the third order


Given that x = i is a solution of 2x^3 + 3x^2 = -2x + -3, find all the possible solutions


find all the roots to the equation: z^3 = 1 + i in polar form


find the sum of r from 0 to n of : 1/((r+1)(r+2)(r+3))


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning