Given that α= 1+3i is a root of the equation z^3 - pz^2 + 18z - q = 0 where p and q are real, find the other roots, then p and q.

All coefficients of z are real, therefore one root must be the complex conjugate so β = 1-3i.It is known that Σαβ = 18 (the coefficient of z), so we can get an equation in the third root, γ, as follows: Σαβ = αβ+αγ+βγ = (1+3i) (1-3i) + (1+3i)γ + (1-3i)γ = 18. Rearranging this we get γ = 4.To find p we use Σα = α+β+γ = 1+3i +1-3i + 4 = -p. Rearranging this we get that p=6. To find q we use Σαβγ = αβγ = (1+3i) (1-3i) (4) = -q. Rearranging this we get that q=-40.

ZG
Answered by Zachary G. Further Mathematics tutor

4418 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How would you use the Integration Factor method to solve an ordinary first-order linear differential equation?


A 1kg ball is dropped of a 20m tall bridge onto tarmac. The ball experiences 2N of drag throughout its motion. The ground has a coefficient of restitution of 0.5. What is the maximum height the ball will reach after one bounce


Simplify i^{4}?


Prove by induction that 6^n + 4 is divisible by 5 for all integers n >= 1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning