Ethanol can be made from the reaction between ethene and water. The reaction is exothermic and occurs at a high temperature. Describe and explain the effect of raising the temperature on the rate of achievement of equilibrium and the equilibrium yield.

The rate of achievement of equilibrium increases. This can be explained by collision theory. Because the temperature is increases the reactants have more energy and therefor the collisions between them become more frequent. In addition, a higher proportion of the collisions result in a successful reaction as the energy of the collisions is higher than that of the activation enthalpy which is the energy required for the reaction to occur.The equilibrium yield of ethanol decreases. This is explained by Le Chartilier’s Principle “If a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium moves to counteract the change”. As the reaction is exothermic we know that heat is being given out by it, therefore to counteract the change the reaction essentially needs to cool itself down. Therefore, the position of equilibrium shifts in the direction of the endothermic reaction and as a result the equilibrium yield of the product, ethanol, decreases.

AN
Answered by Alex N. Chemistry tutor

7025 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

State what is meant by term enthalpy change of neutralisation


What's the difference between an electrophile and a nucleophile?


Explain in detail what do you understand by catalyst, what makes them so useful and give two example of catalytic processes including the name catalyst used.


Flask Q (volume = 1.00 x 103 cm3 ) is filled with ammonia (NH3) at 102 kPa and 300 K. Calculate the mass of ammonia in flask Q. (Gas constant R = 8.31 J K−1 mol−1 )


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning