State and derive Kepler's third law

Kepler's third law states that the square of the period of any planet is proportional to the cube of its orbital radius.To derive it, two equations are required: F=GMm/r^2 and F = mv^2/r. These are Newtons law of gravity and the centripetal force for an object moving in circular motion respectively.By equating the two you can see that GMm/r^2 = mv^2/r. the m's and r's (mass and radius) then cancel to give: GM/r = v^2.v^2 can be shown to be equal to (2pir/T)^2, which I would show in the video and this can be substituted in to finally show that: T^2 = 4pi^2r^3/GM. I can then expand on this question by asking the student to find the period of a planet with mass M and radius r.

SB
Answered by Samuel B. Physics tutor

2694 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the stress in a cylindrical rod of 10.0cm diameter when loaded by 50.0N force at each end?


Derive an expression for the centripetal acceleration of a body in uniform circular motion.


How would our Sun's luminosity change if we increased its temperature 3 times?


Why do all objects fall at the same rate in a vacuum, independent of mass?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences