How can we explain the standing waves on a string?

When a wave reaches the end of a string, it is reflected and inverted, so in a fixed string in which we've caused vibrations, such as a guitar string, we have two sinusoidal waves travelling in opposite directions. In certain places, where the two waves are exactly out of phase, we observe destructive interference (crest meets trough, and the two waves cancel each other out) and the point remains static. These points are called nodes. Midway between them, we can observe the opposite: constructive interference (where the two waves coincide and produce an even bigger displacement); these points of greatest amplitude are called antinodes. The fixed ends of the string are always nodes, and the number of nodes and antinodes depends on how long the string is relative to the wavelength. For example, in a string which is one-half wavelength long, we have two nodes (at both ends of the string) and one antinode; if the string is one wavelength long, we have three nodes and two antinodes, and so on.

Answered by Boris A. Physics tutor

1385 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What are the assumptions made when calculating values regarding an Ideal Gas?


Steel has a density of 8030kg/m^3. Show that a steel ball with a diameter of 5cm weighs approximately 5N


How do I calculate the hydrostatic pressure?


what would be the mass required to keep an object with a mass of 250kg orbiting at a constant distance of 100km with a linear velocity of 100m/s?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy