Describe why phenol reacts more readily with bromine than benzene does.

(labelled diagrams of both benzene and phenol would be used to show the overlapping p orbitals above and below the plane of the molecule, with phenol showing the partial delocalisation of the oxygen lone pairs into the pi bond ring structure)Benzene is bonded covalently by a delocalised ring system of pi bonds. Each carbon is bonded to 3 other atoms (2 carbons and a hydrogen atom) by sigma bonds, leaving 1 electron delocalised in a p orbital. These p orbitals overlap sideways above and below the plane of the molecule and spread over all 6 carbons in the ring, forming a pi bond structure with low electron density (as the 6 delocalised electrons are spread over 6 carbons). This low electron density means that benzene cannot induce a dipole or attract electrophiles as easily as phenol.Phenol contains an oxygen atom which contributes a lone pair that partially delocalises into the pi bond structure, increasing its electron density. This means that its electrons can repel electrons in the Br-Br bond in bromine to induce a dipole, and can attract the positive charge on the electrophile more readily.

AJ
Answered by Abigail J. Chemistry tutor

8757 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

How do you calculate the units for Kc?


In organic chemistry, how can functional groups be easily identified and how can I memorise organic mechanisms?


Explain why the enthalpy of lattice dissociation of potassium oxide is less endothermic than that of sodium oxide. ( 2 Marks)


Explain how CH3CH2CHO can react with a Grignard reagent to produce CH3CH2CH(OH)CH2CH3. State the reagents and give the mechanism.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning