Describe why phenol reacts more readily with bromine than benzene does.

(labelled diagrams of both benzene and phenol would be used to show the overlapping p orbitals above and below the plane of the molecule, with phenol showing the partial delocalisation of the oxygen lone pairs into the pi bond ring structure)Benzene is bonded covalently by a delocalised ring system of pi bonds. Each carbon is bonded to 3 other atoms (2 carbons and a hydrogen atom) by sigma bonds, leaving 1 electron delocalised in a p orbital. These p orbitals overlap sideways above and below the plane of the molecule and spread over all 6 carbons in the ring, forming a pi bond structure with low electron density (as the 6 delocalised electrons are spread over 6 carbons). This low electron density means that benzene cannot induce a dipole or attract electrophiles as easily as phenol.Phenol contains an oxygen atom which contributes a lone pair that partially delocalises into the pi bond structure, increasing its electron density. This means that its electrons can repel electrons in the Br-Br bond in bromine to induce a dipole, and can attract the positive charge on the electrophile more readily.

AJ
Answered by Abigail J. Chemistry tutor

7918 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

Describe the shape of, and bonding in, a molecule of benzene and explain why benzene does not readily undergo addition reactions.


Name the three steps in free radical substitution and give an example equation for each


Define the term empirical formula. Determine the molecular formula of a compound with the empirical formula C2H4O and a relative molecular mass of 176.0


Order the relative base strength of phenyl amine, methyl amine and methylphenyl amine and outline your reasoning.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning