Answers>Maths>IB>Article

f(x)=sin(2x) for 0<x<pi, find the values of x for which f is a decreasing function

A decreasing function means that its instantaneous slope (rate of change) is negative and the function tends to smaller values of y.There are two approaches to this. One is graphical, as sin(x) is a recognisable function and simply by picturing it we can give an answer: (pi/2,3pi/2). This makes sense because sin(x) reaches its maximum of 1 at pi/2, and from that point on decreases until its minimum value of -1. Since sin(2x) is simply a horizontal expansion of sin(x) by a factor of 1/2, we can correct our domain for the values of x accordingly: (pi/4, 3pi/4). The other approach is to use derivatives. We know d/dx(sin(2x))=2cos2x, hence we have: f'(x)=2cos(2x). We will now find the points where f'(x) is 0, meaning that the "slope" is flat and the function has a turning point. In the domain 0<x<pi, our two turning points will be at pi/4 and 3pi/4. We can now draw a sign diagram to see where the slope of f'(x) is negative, and reach the answer (pi/4, 3pi/4).

YM
Answered by Yago M. Maths tutor

2544 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

How do I find the derivative of 2^x?


Let (x + 3) be a factor of the polynomial P(x) = x^3 + ax^2 - 7x + 6. Find a and the other two factors.


How does the right angle triangle definition of sine, cosine and tangent relate to their graphs as a function of angle and to Euler's formula?


Prove 2^(n+2) + 3^(2n+1) is a multiple of 7 for all positive integers of n by mathematical induction.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning