Answers>Maths>IB>Article

Given the function f(x)=λx^3 + 9, for λ other than zero, find the inflection point of the graph in terms of λ. How does the slope of the line tangent to the inflection point changes as λ varies from 0 to 1?

f'(x) = 3λx^2f''(x) = 6λxFor the inflection point (x0,y0), it is true that f''(x0)=0 so 6λxo=0 => x0= 0 (since λ cannot be zero)Therefore, the infelction point is (0,f(0)) => (0,9)The second part of the question is a trick question since any line tangent to th einfelction point of a graph is parallel with the x'x axis.

CD
Answered by Claire D. Maths tutor

2167 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Find the derivative of the next function using the implicit method: x^2 sin(x+y)-5 y e^x​​​​​​​=0


log_10⁡((1/(2√2))*(p+2q))=(1/2)(log_10⁡p+log_10⁡q),p,q>0,find p in terms of q.


How do I derive the indefinite integral of sine?


Sketch the graph of x^2 - y^2 = 16


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences