Approximately how long is a double-stranded DNA molecule with a molecular weight of 3x10^9 g/mol? Assume the molecular weight of one nucleotide is 333 g/mol, and that there are 10 base pairs for each turn of the DNA helix equalling 3.4nm in length.

Let's begin by assessing the molecule. If we divide the molecular weight by two, that will give us the weight for one strand of the helix. Knowing that one nucleotide is 333 g/mol, then dividing the weight of one strand by 333 g/mol will yield the number of nucleotides comprising that strand.
We also know that every 10 nucleotides, the helix turns, measuring 3.4nm. Therefore, dividing the number of nucleotides in the strand by ten will reveal the number of helical turns, each being 3.4nm in length. Finally, multiplying the number of helical turns by 3.4nm will yield our answer.

AV
Answered by Aaron V. Human Biology tutor

10366 Views

See similar Human Biology A Level tutors

Related Human Biology A Level answers

All answers ▸

State three differences between the structure of DNA and the structure of RNA


Explain how one risk factor can lead to the development of coronary heart disease (CHD)


Describe what an action potential is and how is it transmitted. Refer to the action of stimuli and neurons in your answer.


How does the theory of evolution due to natural selection explain the extinction of other species?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning