solve 3sinh^2(2x) + 11sinh(2x) = 4 for x, giving your answer(s) in terms of the natural log.

3sinh^2(2x) + 11sinh(2x) - 4 = 0 --> (3sinh(2x) - 1)(sinh(2x) + 4) = 0 --> sinh(2x) = 1/3, sinh(2x) = -4(e^(2x) - e^(-2x))/2 = 1/3 --> e^(4x) -(2/3)e^(2x) - 1 = 0 --> e^(2x) = 1/3 + 2sqrt(5)/3 the other solution is negative, e^2x > 0--> x = (1/2)ln(1/3 + 2sqrt(5)/3)(e^(2x) - e^(-2x))/2 = -4 --> e^(4x) - 8e^(2x) - 1 = 0 --> e^(2x) = 4 + sqrt(34) sqrt(34) > 4 so other solution is negative--> x = (1/2)ln(4 + sqrt(34))

WM
Answered by William Michael O. Further Mathematics tutor

2593 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Prove by induction that f(n) = 2^(k + 2) + 3^(3k + 1) is divisible by 7 for all positive n.


How do you calculate the derivative of cos inverse x?


How to multiply and divide by complex numbers


Unfortunately this box is to small to contain the question so please see the first paragraph of the answer box for the question.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning