Evaluate ∫sin⁴(x) dx by expressing sin⁴(x) in terms of multiple angles

First we remember that sinθ can be expressed in terms of powers of z, where z=cos(θ)+isin(θ), using the following:2isin(nθ)=zⁿ-z⁻ⁿ and 2cos(nθ)=zⁿ+z⁻ⁿ
so, [2isin(θ)]⁴=[z¹-z⁻¹]⁴ 16sin(θ)=(z)⁴(-z⁻¹)⁰+4(z)³(-z⁻¹)¹+6(z)²(-z⁻¹)²+4(z)¹(-z⁻¹)³+(z)⁰(-z⁻¹)⁴ by binomial exp.This simplifies to:16sin(θ)=(z⁴+z⁻⁴)-4(z²+z⁻²)+6but as we saw before (zⁿ+z⁻ⁿ)=2cos(nθ)so 16sin⁴(θ)=2cos(4θ)-8cos(2θ)+6so ∫sin⁴(x)=(1/16)∫2cos(4θ)-8cos(2θ)+6dx=3/8x-1/4sin(2x)+1/32sin(4x)+C.

NH
Answered by Nicholas H. Further Mathematics tutor

3483 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

The plane Π contains the points (1, 2, 3), (0, 1, 2) and (2, 3, 0). What is the vector equation of the plane? and what is the cartesian equation of the plane?


Solve the following inequality: 2x^2 < x+3


How would go about finding the set of values of x for which x+4 > 4 / (x+1)?


Prove by mathematical induction that 2^(2n-1) + 3^(2n-1) is divisible by 5 for all natural numbers n.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning