Evaluate ∫sin⁴(x) dx by expressing sin⁴(x) in terms of multiple angles

First we remember that sinθ can be expressed in terms of powers of z, where z=cos(θ)+isin(θ), using the following:2isin(nθ)=zⁿ-z⁻ⁿ and 2cos(nθ)=zⁿ+z⁻ⁿ
so, [2isin(θ)]⁴=[z¹-z⁻¹]⁴ 16sin(θ)=(z)⁴(-z⁻¹)⁰+4(z)³(-z⁻¹)¹+6(z)²(-z⁻¹)²+4(z)¹(-z⁻¹)³+(z)⁰(-z⁻¹)⁴ by binomial exp.This simplifies to:16sin(θ)=(z⁴+z⁻⁴)-4(z²+z⁻²)+6but as we saw before (zⁿ+z⁻ⁿ)=2cos(nθ)so 16sin⁴(θ)=2cos(4θ)-8cos(2θ)+6so ∫sin⁴(x)=(1/16)∫2cos(4θ)-8cos(2θ)+6dx=3/8x-1/4sin(2x)+1/32sin(4x)+C.

NH
Answered by Nicholas H. Further Mathematics tutor

3371 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

A parabola with equation y^2=4ax for constant a is translated by the vector (2,3) to give the curve C. The curve C passes through the point (4,7), what is the value of a?


Using your knowledge of complex numbers, such as De Moivre's and Euler's formulae, verify the trigonometric identities for the double angle.


How to determine the modulus of a complex number?


f(x)=ln(x). Find the area underneath the curve f(x) between 1 and 2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning